Assessment of two approximation methods for computing posterior model probabilities
نویسندگان
چکیده
Model selection is an important problem in statistical applications. Bayesian model averaging provides an alternative to classical model selection procedures and allows researchers to consider several models from which to draw inferences. In the multiple linear regression case, it is di4cult to compute exact posterior model probabilities required for Bayesian model averaging. To reduce the computational burden the Laplace approximation and an approximation based on the Bayesian information criterion (BIC) have been proposed. The BIC approximation is the easiest to calculate and is being used widely in application. In this paper we conduct a simulation study to determine which approximation performs better. We give an example of where the methods di8er, study the performance of these methods on randomly generated models and explore some of the features of the approximations. Our simulation study suggests that the Laplace approximation performs better on average than the BIC approximation. c © 2004 Published by Elsevier B.V.
منابع مشابه
Monte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System
We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobsho...
متن کاملFast Bayesian model assessment for nonparametric additive regression
Variable selection techniques for the classical linear regression model have been widely investigated. Variable selection in fully nonparametric and additive regression models has been studied more recently. A Bayesian approach for nonparametric additive regression models is considered, where the functions in the additivemodel are expanded in a B-spline basis and a multivariate Laplace prior is...
متن کاملFast Bayesian Feature Selection for High Dimensional Linear Regression in Genomics via the Ising Approximation
Feature selection, identifying a subset of variables that are relevant for predicting a response, is an important and challenging component of many methods in statistics and machine learning. Feature selection is especially difficult and computationally intensive when the number of variables approaches or exceeds the number of samples, as is often the case for many genomic datasets. Here, we in...
متن کاملFast Approximation of Inverse Gamma Inequalities
Bayesian clinical trial methods sometimes use a conjugate exponentialinverse gamma model for event times. Random inequalities between posterior inverse gamma distributions are used to determine stopping conditions, for example in [1]. Computing these inequalitiy probabilities accounts for nearly all of the computation time used in simulating such trials. This report presents an approximation th...
متن کاملExponential Models: Approximations for Probabilities
Welch & Peers (1963) used a root-information prior to obtain posterior probabilities for a scalar parameter exponential model and showed that these Bayes probabilities had the confidence property to second order asymptotically. An important undercurrent of this indicates that the constant information reparameterization provides location model structure, for which the confidence property ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 48 شماره
صفحات -
تاریخ انتشار 2005