Assessment of two approximation methods for computing posterior model probabilities

نویسندگان

  • Edward L. Boone
  • Keying Ye
  • Eric P. Smith
چکیده

Model selection is an important problem in statistical applications. Bayesian model averaging provides an alternative to classical model selection procedures and allows researchers to consider several models from which to draw inferences. In the multiple linear regression case, it is di4cult to compute exact posterior model probabilities required for Bayesian model averaging. To reduce the computational burden the Laplace approximation and an approximation based on the Bayesian information criterion (BIC) have been proposed. The BIC approximation is the easiest to calculate and is being used widely in application. In this paper we conduct a simulation study to determine which approximation performs better. We give an example of where the methods di8er, study the performance of these methods on randomly generated models and explore some of the features of the approximations. Our simulation study suggests that the Laplace approximation performs better on average than the BIC approximation. c © 2004 Published by Elsevier B.V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System

We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobsho...

متن کامل

Fast Bayesian model assessment for nonparametric additive regression

Variable selection techniques for the classical linear regression model have been widely investigated. Variable selection in fully nonparametric and additive regression models has been studied more recently. A Bayesian approach for nonparametric additive regression models is considered, where the functions in the additivemodel are expanded in a B-spline basis and a multivariate Laplace prior is...

متن کامل

Fast Bayesian Feature Selection for High Dimensional Linear Regression in Genomics via the Ising Approximation

Feature selection, identifying a subset of variables that are relevant for predicting a response, is an important and challenging component of many methods in statistics and machine learning. Feature selection is especially difficult and computationally intensive when the number of variables approaches or exceeds the number of samples, as is often the case for many genomic datasets. Here, we in...

متن کامل

Fast Approximation of Inverse Gamma Inequalities

Bayesian clinical trial methods sometimes use a conjugate exponentialinverse gamma model for event times. Random inequalities between posterior inverse gamma distributions are used to determine stopping conditions, for example in [1]. Computing these inequalitiy probabilities accounts for nearly all of the computation time used in simulating such trials. This report presents an approximation th...

متن کامل

Exponential Models: Approximations for Probabilities

Welch & Peers (1963) used a root-information prior to obtain posterior probabilities for a scalar parameter exponential model and showed that these Bayes probabilities had the confidence property to second order asymptotically. An important undercurrent of this indicates that the constant information reparameterization provides location model structure, for which the confidence property ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2005